

Accurate Mapping using Drones

The fundamentals to obtain true photogrammetric accuracy are still the same

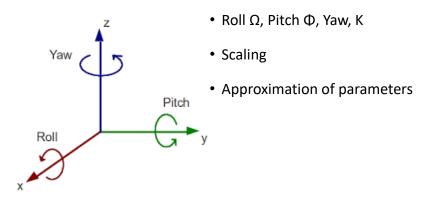
Richard Russell - Technical Director Drone Services (Fiji) Pte Ltd

Excitement and potential of autonomous drones for mapping

For high accuracy mapping - reliably and repetitively

Fundamentals of Photogrammetry remain the same

Some definitions

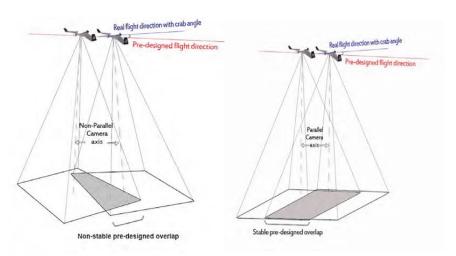

Accuracy: Proximity of measurement results to true values

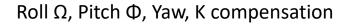
Precision: Reliable and repetitive mapping

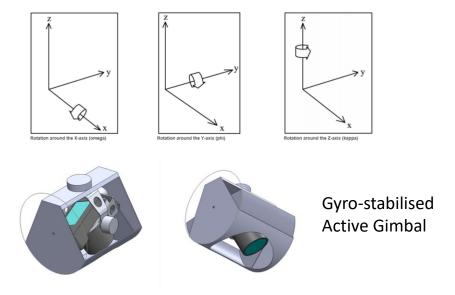
Accurate Drone Mapping system:

achievable accuracies in the X, Y and Z (height) verifiable and repeatable

Recognition, measurement and mathematical treatment of mapping system errors

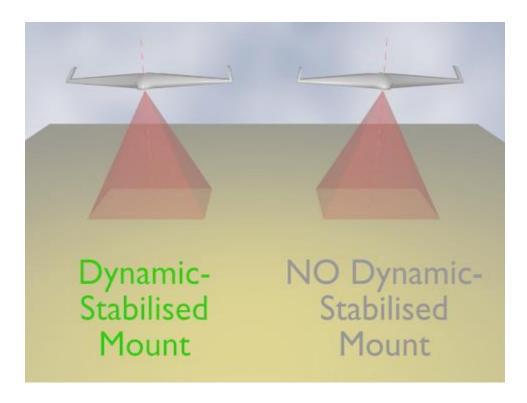

Goal of photogrammetry: accurate measurement of imagery by rigorous treatment of errors

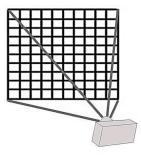

Physical Environment and Sensors

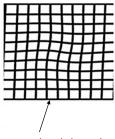

- Aggressive environment Wind, turbulence, internal vibration
- Tips, tilts, yaw, forward & lateral motion compensation
- Flight planning and implementation
- Digital v's Commercial Off the Shelf (CTOS) Cameras
- Camera fixed to airframe

Errors are random, unknown and significant

What we want




Hardware and Software solutions to achieve accurate mapping


- roll, pitch and yaw solved with the use of a Gyro-stabilised Active Mount (GAM) built into the drone
- Frames are near-nadir and have almost no crab
- Integrated with the Flight Management Software
- Record remaining small amounts of Ω , Φ , K with the GAM
- Results: images in nadir position with better than 1 degree of accuracy
- Imagery is immediately available for human 3D stereo viewing
- Reduction or elimination of angular image motion

Dynamically Stabilised Active Mount

Image with and without Gyro-Stabilised Active Mount

Warped and skewed image without the GAM

Cameras

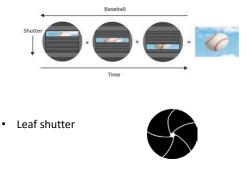
Small UAV payload weight & flight endurance dictate cameras

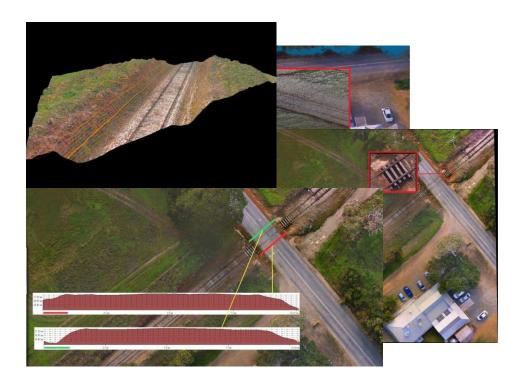
- Digital cameras, small, light and cheap (but tragic for accurate photogrammetric mapping)
- Photogrammetric Cameras expensive and heavy
- Commercial Off The Shelf (COTS) Digital cameras specify for the drone with Photogrammetric fundamentals

Fundamentals to specify for the CTOS camera

Largest Field of View (FOV) - Larger the FOV the greater the effective ground coverage

- Large ground coverage = less flight runs to cover the same area of interest (AOI)
- Less images to match and process
- Increases the accuracy of the photogrammetry


Larger Sensor and Pixel size


• full frame sensor 36mm x 24mm, bigger image sensors = better quality photo's

Fundamentals to specify for the CTOS camera

Shutter system, Focal plane v's Leaf

 Focal plane, curtain with a slit travels across the digital sensor, not suitable for photogrammetry

Understanding the Digital Camera's high dynamic range

14 bit digital image technology allows us to get more detail out of areas that are traditionally featureless

Summary

- Drones systems designed from first principles as accurate Photogrammetric systems
- Dynamic Stabilised Active Mounts
- 20, 24, 36 Mp calibrated full-frame CTOS (Prosumer) camera sensors
- Direct Georeferencing PPK system
- 20mm horizontal (X & Y), 25 mm vertical (Z) accuracy

Acknowledgement

Thomas Tadrowski Dronemetrex Pty Ltd

1/12/2016

request a copy of the white paper from

richard@droneservicesfiji.com.fj

